scripts / compare /
840bb8c 3 years ago
1 contributor
328 lines | 11.283kb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329#!/usr/bin/env python3
# basé sur l'idée de Shivam Aggarwal sur https://shivama205.medium.com/audio-signals-comparison-23e431ed2207
# WTFL

import argparse
import subprocess 
import numpy 
import os
import sys
import time
import multiprocessing

def initialize():
    defaults = {
        'sample_time' : 500, # seconds to sample audio file for fingerprint calculation
        'span'        : 150, # number of points to scan cross correlation over
        'step'        : 1,   # step size (in points) of cross correlation
        'min_overlap' : 20,  # minimum number of points that must overlap in cross correlation
                             # exception is raised if this cannot be met
        'threshold'   : 80,  # %
        'processor'   : os.cpu_count(),
        'separator'   : ';'
    }

    def check_nproc(arg):
        try:
            n = int(arg)
        except ValueError:
            raise argparse.ArgumentTypeError("il faut un nombre entier")
        if n <  1 or n > os.cpu_count():
            raise argparse.ArgumentTypeError("{} n'est pas compris entre 1 et {:d}".format(n, os.cpu_count()))
        return n

    def check_threshold(arg):
        try:
            n = float(arg)
        except ValueError:
            raise argparse.ArgumentTypeError("il faut un nombre")
        if n <  0 or n > 100:
            raise argparse.ArgumentTypeError("{} n'est pas compris entre 0 et 100 inclus".format(n))
        return n

    def parse_input_files(input_file, source_files):
        if isinstance(input_file, list):
            for f in input_file:
                parse_input_files(f, source_files)
        else:
            if os.path.isfile(input_file):
                source_files[input_file] = 1
            elif os.path.isdir(input_file):
                for root, dirs, files in os.walk(input_file):
                    for f in files:
                        parse_input_files(os.path.join(root, f), source_files)

    parser = argparse.ArgumentParser(__file__)
    parser.add_argument("-i ", "--source-file",
            action   = 'append',
            nargs    = '+',
            help     = "répertoire ou fichier"
            )
    parser.add_argument("-t ", "--threshold",
            type    = check_threshold,
            default = defaults['threshold'],
            help    = "seuil en pourcentage sous lequel il est considéré qu'il n'y a pas de corrélation (défaut: %(default)d)"
            )
    parser.add_argument("-p ", "--processor",
            type    = check_nproc,
            default = defaults['processor'],
            help    = "le nombre de processus parallèles lancés (défaut: %(default)d)"
            )
    parser.add_argument("--sample-time",
            type    = int,
            default = defaults['sample_time'],
            help    = "seconds to sample audio file for fpcalc (défaut: %(default)d)"
            )
    parser.add_argument("--span",
            type    = int,
            default = defaults['span'],
            help    = "finesse en points pour scanner la corrélation (défaut: %(default)d)"
            )
    parser.add_argument("--step",
            type    = int,
            default = defaults['step'],
            help    = "valeur du pas en points de corrélation (défaut: %(default)d)"
            )
    parser.add_argument("--min-overlap",
            type    = int,
            default = defaults['min_overlap'],
            help    = "nombre minimal de points de correspondance (défaut %(default)d)"
            )
    parser.add_argument("--separator",
            type    = str,
            default = defaults['separator'],
            help    = "séparateur des champs de résultat (défaut '%(default)s')"
            )

    args = parser.parse_args()

    source_files = {}
    for f in args.source_file:
        parse_input_files(f, source_files)

    return list(source_files.keys()), args
  
def prime(i, primes):
    for prime in primes:
        if not (i == prime or i % prime):
            return False
    primes.add(i)
    return i

def nPrimes(n):
    primes = set([2])
    i, p = 2, 0
    while True:
        if prime(i, primes):
            p += 1
            if p == n:
                return primes
        i += 1

def getPrimes(n, ids):
    a = 0
    b = 0
    for i in ids:
        if n % i == 0:
            a = i
            b = int(n / i)
            break
    return a, b

# calculate fingerprint
def calculate_fingerprints(filename):
    fpcalc_out = subprocess.getoutput('fpcalc -raw -length {} "{}"'.format(args.sample_time, filename))
    fingerprint_index = fpcalc_out.find('FINGERPRINT=') + 12
    
    return fpcalc_out[fingerprint_index:]
  
# returns correlation between lists
def correlation(listx, listy):
    if len(listx) == 0 or len(listy) == 0:
        # Error checking in main program should prevent us from ever being
        # able to get here.
        raise Exception('Empty lists cannot be correlated.')

    if len(listx) > len(listy):
        listx = listx[:len(listy)]
    elif len(listx) < len(listy):
        listy = listy[:len(listx)]
    
    covariance = 0
    for i in range(len(listx)):
        covariance += 32 - bin(listx[i] ^ listy[i]).count("1")
    covariance = covariance / float(len(listx))
    
    return covariance/32
  
# return cross correlation, with listy offset from listx
def cross_correlation(listx, listy, offset):
    if offset > 0:
        listx = listx[offset:]
        listy = listy[:len(listx)]
    elif offset < 0:
        offset = -offset
        listy = listy[offset:]
        listx = listx[:len(listy)]
    if min(len(listx), len(listy)) < args.min_overlap:
        # Error checking in main program should prevent us from ever being
        # able to get here.
        return 

    return correlation(listx, listy)
  
# cross correlate listx and listy with offsets from -span to span
def compare(listx, listy, span, step):
    if span > min(len(list(listx)), len(list(listy))):
        # Error checking in main program should prevent us from ever being
        # able to get here.
        raise Exception('span >= sample size: %i >= %i\n'
                        % (span, min(len(list(listx)), len(list(listy))))
                        + 'Reduce span, reduce crop or increase sample_time.')
    corr_xy = []
    for offset in numpy.arange(-span, span + 1, step):
        corr_xy.append(cross_correlation(listx, listy, offset))
    return corr_xy
  
def get_max_corr(corr, source, target):
    max_corr_index = corr.index(max(corr))
    max_corr_offset = -args.span + max_corr_index * args.step
# report matches
    if corr[max_corr_index] * 100 >= args.threshold:
        return corr[max_corr_index], max_corr_offset

def correlate(source, target):
    corr = compare(source, target, args.span, args.step)
    return get_max_corr(corr, source, target)

def get_tests_nbr(n):
    return n * n - n * ( n + 1 ) / 2

def get_ETA(start, total, done):
    now = time.time()
    return time.ctime(now + (now - start) / done * (total - done))

def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)

def mp_calculate_fingerprints(key):
    try:
        ziques[key] = {
            'fingerprint': list(map(int, calculate_fingerprints(ziques[key]['path']).split(','))),
            'path': ziques[key]['path']
        }
    except:
        erreurs.append(ziques[key]['path'])
        del ziques[key]
        pass

def mp_correlate(key):
    try:
        c, o = correlate(
                ziques[comparaison[key]['a']]['fingerprint'],
                ziques[comparaison[key]['b']]['fingerprint'])
        comparaison[key] = {
            'a': comparaison[key]['a'],
            'b': comparaison[key]['b'],
            'correlation': c,
            'offset': o
        }
    except:
        del comparaison[key]
        pass


if __name__ == "__main__":
    global args
    source_files, args= initialize()

    if len(source_files) < 2:
        print("au moins deux fichiers sont nécessaires")
        sys.exit()

    ids = list(nPrimes(len(source_files)))
    total_ids = len(ids)

    manager = multiprocessing.Manager()
    ziques = manager.dict()
    comparaison = manager.dict()
    erreurs = manager.list()
    pool = multiprocessing.Pool(args.processor)

    for f in range(len(source_files)):
        ziques[ids[f]] = { 'path': source_files[f] }

    del source_files

    nb_erreurs = len(erreurs)
    start = time.time()
    for i, _ in enumerate(pool.imap_unordered(mp_calculate_fingerprints, ziques.keys()), 1):
        nb_erreurs = len(erreurs)
        print('calcul des empreintes{:s}: {:.1f}% (ETA {:s})'.format(
                    ("", " (" + str(nb_erreurs) + " erreur{})".format(("", "s")[nb_erreurs > 1]))[nb_erreurs > 0],
                    i / total_ids * 100, 
                    get_ETA(start, total_ids, i)),
                end='\r')
    sys.stdout.write("\033[K") #clear line
    print('calcul des empreintes terminé ({:d} fichiers traités{:s})'.format(
                len(ziques),
                ("", " et " + str(nb_erreurs) + " erreur{}".format(("", "s")[nb_erreurs > 1]))[nb_erreurs > 0]))

    if len(erreurs):
        print("Fichier{} en erreur:".format(("", "s")[len(erreurs) > 1]))
        for k in erreurs:
            print(k)
        print()

    erreurs[:] = [] # vide la liste d'erreurs
    nb_erreurs = len(erreurs)
    nb_tests = get_tests_nbr(len(ziques))
    done = 0

    start = time.time()
    for a in ziques.keys():
        for b in ziques.keys():
            id_correl = a * b
            if a == b or id_correl in comparaison:
                continue
            comparaison[id_correl] = {
                'a': a,
                'b': b
            }
            done += 1
        print("construction liste: {:.1f}% (ETA {:s})".format(
                    done / nb_tests * 100,
                    get_ETA(start, nb_tests, done)),
                end='\r')
    sys.stdout.write("\033[K") #clear line

    tests_nbr = len(comparaison)

    start = time.time()
    for i, _ in enumerate(pool.imap_unordered(mp_correlate, comparaison.keys()), 1):
        found = len(comparaison) + i - tests_nbr
        print('{:s} corrélation{pluriel:s} trouvée{pluriel:s}: {:.1f}% (ETA {:s}){:s}'.format(
                    ("aucune", str(found))[found > 0],
                    i / tests_nbr * 100,
                    get_ETA(start, tests_nbr, i),
                    '      ',
                    pluriel = ("", "s")[found > 1]),
                end='\r')

    sys.stdout.write("\033[K") #clear line
    print('comparaison terminée:\n{0:d} comparaison{pluriel1} effectuée{pluriel1}\n{1} corrélation{pluriel2} trouvée{pluriel2} (seuil {2}%)'.format(
                tests_nbr,
                len(comparaison),
                args.threshold,
                pluriel1=("", "s")[tests_nbr > 1],
                pluriel2=("", "s")[len(comparaison) > 1],
                ))

    for k in comparaison.keys():
        print("{:s}{sep}{:s}{sep}{:.2f}%{sep}{:d}".format(
                    ziques[comparaison[k]['a']]['path'],
                    ziques[comparaison[k]['b']]['path'],
                    comparaison[k]['correlation'] * 100,
                    comparaison[k]['offset'],
                    sep = args.separator
                ))